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Boundary Value Problems for Nabla Fractional
Difference Equations of order less than one
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Abstract—  In  this Paper, a fractional order (0 < < 1) nabla difference equation satisfying two point boundary value conditions is
considered. Existence and uniqueness  of solutions are established using Contraction mapping theorem and nonlinear contraction
mapping theorem. The results are illustrated by some examples.this column.
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1  INTRODUCTION

He theorey of difference equations [2, 3, 13, 15] has
gained importance due to two important reasons viz.,

a).Their applicability in different areas of science, engi-
neering and techonology involving discrete phenomenon

        b).Discretization of differential equations to suit the
needs of digital era.

Though many of the results in the theorey of difference
equations are generalization of the corresponding results
in the theorey of ordinary difference equations.

Studies about discrete boundary value problems already
exist in the literature ( [5, 6, 15, 16] and references there-
in).

Fractional calculus [11] gained the attention of many
mathematicians and engineers due to its applicability in
diverse fields such as visco-elasticity, control theorey, neu-
rology etc. But the analogous theorey of discrete fractional
calculus was initiated recently and some inequalities,

comparision principles and solutions of fractional differ-
ence equations were developed [1, 9, 10, 12, 14].

Moreover, a good number of papers dealing with discrete
fractional boundary value problems of order ( > 1) and
involving forward differnce operator ( ) are available in
the literature [7, 8]. But much not been yet done for ( <
1). Recently, Rue A.C .Ferreira has initiated the study in
that direction [17] involving differnce operator.

With the motivation derived from the above analysis, in
this

paper we establish existence and uniquesness of solutions
to

two point boundary value problem (TPBVP) associated
with fractional difference equations of order (0 < < 1)
involving backward difference operator ( ).

T
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This paper is organised as follows: in Section 2, we  give
some definitions and fundamental results from the theo-
rey of discrete fractional calculus that are necessary for
our study. Section 3 contains main results and in Section 4,
the results established are illustrated with examples.

2 PRELEMANIES

Throught out this paper, for notations and terminiology

we refer [15]. For any real number n 0 , denote N
0n = { n 0 ,

n 0 +1 , …}. For any functuion u : N
0n  R, backward dif-

ference operator or nabla difference operator is defined as
u(n) = u(n)-u(n-1).

Definition2.1.

The extended binomial coefficient
n
a

),( ZnRa  is

defined as

00
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Definition2.2. For any complex number  and ,

(  ) is defined as

)2.2(
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Remark1.

For any complex number and ,when , and

are neither zero nor negative integers, then for any
positive integer,

.
0

kkn

n

k
n k

n

Though fractional difference and sum operators have been
defined in different ways, the definitions given by Hirota
[14] and Atsushi Nagai [1] (which is a slight modification of
Hirota’s) using the extended binomial coefficient are very
interesting

Definition2.3. [1] Let u(n) : RN 0 , mm 1 ,

R  and m 1N . Then the fractional sum opera-
tor of order  is defined as
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(2.3)

Definition2.4. The Caputo type fractional difference
operator of order  is defined as————————————————
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 Corollary1. [12] The equivalent form of (2.4) is given
by
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Proof. We prove the statement (2.5) by using mathe-
matical induction on m.

For m=1, (2.4) becomes
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The Statement is true for m=2.

We assume that the statement is true for m-1. Then
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Now we prove that the statement is true for m. Con-
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Hence by principle of mathematical induction, the
statement is true for m.

Definition2.5. The Reimann-Liouville type fractional
difference operator of order  is defined as
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Corollary2. The equalent form of (2.6) is given by
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Applying the procedure m-1 times we get the required
result.

Remark2. Let u(n) be any function defined for n 0N
and f(n, r) be a function defined on n 0N ,  0

.  Then for

n 0  and 0 < 1 ,  if

thennunfnu ))(,()(
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3 MAIN RESULTS

In this section we consider the following the follow-
ing boundary value problem associated with fraction-
al difference equation of order 0 < 1,

))(,()( nunfnu
(3.1)

au(0)+bu(N+1) = 0 .
(3.2)

Here u(n) is defined on n 0N ,
)1()()( nununu is the backward difference of

u(n), a and b are constants, f(n, r) is

A real valued function defined for (n, r)
),0[0N . Equation (3.1) subject to (3.2) is dis-

crete fractional boundary value problem (DFBVP).
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Further it can be observed that D(N, ), j  is increas-
ing in j and D(N, ), j  < 1, for j=0, 1, 2, …, N-1 and
when j=N, D(N, ), N =1.

Theorem3.2. Suppose that there exists a constant M
such that u(j))f(j, M , then any solution u(n) of
(3.1) satisfies
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Proof:  Let u(n) be a solution of (3.1).

From Remark 2, we have
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Theorem3.3. Suppose that a > 0 and b 0 , then the
solution of the boundary value problem (3.1) and (3.2)
satisfies
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Proof. Let u(n) be a solution of (3.1) which implies
from Remark 2 that
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Substituting (3.4) in (3.3), we get
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Further, if Mjujf ))(,( , then
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Next we wish to establish the uniqueness of solutions
to the boundary value problem (3.1) and (3.2). To
achieve this, we define ],[

0
RNC n , the Banach space

of all functions u(n) with norm defined by

0
,)(max nNnnuu  and define F: C[

0nN , R]
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Theorem3.4. Suppose that the conditions of Theorem
(3.3) hold good and there exists a constant L > 0 such
that
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Proof. First we convert the problem into a fixed point
problem by defining a map F : C[

0nN , R]  C[
0nN , R]

by (3.6).

For u, v ,R  consider
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In view of (3.8), we have vuFF vu  where  <
1. Hence F has contraction map and hemce by Banach
fixed point theorem F has unique fixed point.

This result can be established using nonlinear contaction
also.
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Definition3.1. Let X be a Banach space and a map

F: XX is said to be a nonlinear contraction if there

exists a function RR:   such that and0)0(

)(   for 0  satisfying the property

)(),(),( vuvtfutf (3.9)

Lemma3.5. [4] Let X be a Banach space and F :
XX  be a nonlinear contraction, then F has a

unique point in X.

Theorem3.6. Let C [
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Then boundary value problem (3.1) and (3.2) has unique
solution.

Proof. Define the operator F: C[
0nN , R]  C[

0nN , R]  by
(3.6) and consider the continuous and non-decreasing
function RR: by
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or vuFF vu . Hence F is a nonlinear contac-
tion and by Lemma (3.5), F has a unique fixed point
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which is a unique solution of the boundary value
problem.

4 EXAMPLE

In this section, we illustrate the results established
above by appl

ying them to two point boundary value problem.
Consider the following discrete fractional boundary
value problem.

Example 1: For n
0

6,0 N ,
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Also, here L=1/10, a=1, b=1/2 and hence for < 1
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If =1/2, then 13910.0 .

If =0.9, then 1
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.

Hence the boundary value problem has unique solu-
tion.

Example 2: For n
0

5,0 N ,
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Here L=1/9, a=1 and b= 1/3, now
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)6()2/3(
)2/16(.

36
5

)6()2/3(

)2/3(.
2
5.

2
7.

2
9.

2
11

.
36
5

= 0.375976  < 1.

Hence the boundary value problem has unique solu-
tion.
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